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Overview

• Support Vector Machines for Classification
– Linear Discrimination
– Nonlinear Discrimination

• SVM Mathematically

• Extensions

• Application in Drug Design

• Data Classification

• Kernel Functions
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Definition

– AN INTRODUCTION TO SUPPORT VECTOR 
MACHINES (and other kernel-based learning 
methods)

• N. Cristianini and J. Shawe-Taylor, Cambridge 
University Press 2000 ISBN: 0 521 78019 5

– Kernel Methods for Pattern Analysis
• John Shawe-Taylor & Nello Cristianini Cambridge 

University Press, 2004

One of the excellent classification system based on a
mathematical technique called convex optimization.

‘Support Vector Machine is a system for efficiently training
linear learning machines in kernel-induced feature spaces, while
respecting the insights of generalisation theory and exploiting
optimisation theory.’
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Dot product (aka inner product)

θ

a

θcosbaba =⋅

b

Recall: If the vectors are orthogonal, dot product is zero.

The scalar or dot product is, in some sense, a measure of similarity
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Decision function for binary classification
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Support vector machines

• SVMs pick best separating hyper plane according to 
some criterion
– e.g. maximum margin

• Training process is an optimisation

• Training set is effectively reduced to a relatively small 
number of support vectors

• Key words: optimization, kernels
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Feature spaces

• We may separate data by mapping to a higher-
dimensional feature space
– The feature space may even have an infinite number 

of dimensions!

• We need not explicitly construct the new feature space
– “Kernel trick”
– Keeps the same computation time 

• Key observation that optimization involves dot 
products
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Kernels

• What are kernels?

• We may use Kernel functions to implicitly map to a 
new feature space

• Kernel functions: 

• In SVMs kernels preserve the inner product in the 
new feature space.

( ) Rxx ∈21,K
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Examples of kernels

zx ⋅Linear:

Polynomial 

(non-linear)

( )zx ⋅P

Gaussian 
(non-linear)

( )22 /exp σzx−−
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Perceptron as linear separator 

• Binary classification can be viewed as the task of separating 
classes in feature space:

wTx + b = 0

wTx + b < 0

wTx + b > 0

f(x) = sign(wTx + b)
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Which of the linear separators is optimal?

Tumor

Normal
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Best linear separator?

Tumor

Normal
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Best linear separator?

Tumor

Normal
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Best linear separator? Not so…

Tumor

Normal
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Best linear separator? Possibly…

Tumor

Normal
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Find closest points in convex hulls (3D)/convex polygon (2D)

c

d
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Plane (3D)/line(2D) to bisect closest points 

d
c

wT x + b =0
w = d - c
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Classification margin

• Distance from example data to the separator is 

• Data closest to the hyper plane are support vectors. 

• Margin ρ of the separator is the width of separation between classes.
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Maximum margin classification

• Maximize the margin (good according to intuition and theory).

• Implies that only support vectors are important; other training examples 
are ignorable. 
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Statistical learning theory

• Misclassification error and the function complexity bound 
generalization error (prediction).

• Maximizing margins minimizes complexity.

• “Eliminates” overfitting.

• Solution depends only on support vectors not number of 
attributes. 
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Margins and complexity

Skinny margin
is more flexible
thus more complex.



22

Margins and complexity

Fat margin
is less complex.
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Linear SVM

• Assuming all data is at distance larger than 1 from the 
hyperplane, the following two constraints follow for a 
training set {(xi ,yi)}

• For support vectors, the inequality becomes an equality; then, 
since each example’s distance from the 

• hyperplane is                        the margin is:

wTxi + b ≥ 1    if yi = 1

wTxi + b ≤ -1   if yi = -1

w
2

=ρ
w
xw br
T +

=
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Linear SVM

We can formulate the problem: 

into quadratic optimization formulation: 

Find w and b such that

is maximized and for all {(xi ,yi)}
wTxi + b ≥ 1 if yi=1;   wTxi + b ≤ -1   if yi = -1

w
2

=ρ

Find w and b such that

Φ(w) =½ wTw is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1
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Solving the optimization problem

• Need to optimize a quadratic function subject to linear constraints.

• Quadratic optimization problems are a well-known class of mathematical programming 
problems, and many (rather intricate) algorithms exist for solving them. 

• The solution involves constructing a dual problem where a Lagrange multiplier αi is 
associated with every constraint in the primary problem:

Find w and b such that
Φ(w) =½ wTw is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and 
(1) Σαiyi = 0
(2) αi ≥ 0 for all αi
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The quadratic optimization problem solution

• The solution has the form: 

• Each non-zero αi indicates that corresponding xi is a support vector.
• Then the classifying function will have the form:

• Notice that it relies on an inner product between the test point x and the 
support vectors xi – we will return to this later!

• Also keep in mind that solving the optimization problem involved 
computing the inner products xi

Txj between all training points!

w =Σαiyixi             b= yk- wTxk for any xk such that αk≠ 0

f(x) = Σαiyixi
Tx + b
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Soft margin classification  

• What if the training set is not linearly separable?
• Slack variables ξi can be added to allow misclassification of difficult or 

noisy examples.

ξi

ξi
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Soft margin classification

• The old formulation:

• The new formulation incorporating slack variables:

• Parameter C can be viewed as a way to control overfitting.

Find w and b such that
Φ(w) =½ wTw is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1

Find w and b such that
Φ(w) =½ wTw + CΣξi is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1- ξi and    ξi ≥ 0 for all i
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Soft margin classification – solution

• The dual problem for soft margin classification:

• Neither slack variables ξi nor their Lagrange multipliers appear in the dual 
problem!

• Again, xi with non-zero αi will be support vectors.

• Solution to the dual problem is:

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and 
(1) Σαiyi = 0
(2)  0 ≤ αi ≤ C for all αi

w =Σαiyixi             

b= yk(1- ξk) - wTxk where k = argmax αk
k f(x) = Σαiyixi

Tx + b

But neither w nor b 
are needed explicitly 
for classification!
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Theoretical justification for maximum margins

• Vapnik has proved the following:

The class of optimal linear separators has VC dimension h bounded from 
above as 

where ρ is the margin, D is the diameter of the smallest sphere that can 
enclose all of the training examples, and m0 is the dimensionality.

• Intuitively, this implies that regardless of dimensionality m0 we can minimize 
the VC dimension by maximizing the margin ρ.

• Thus, complexity of the classifier is kept small regardless of dimensionality.
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Linear SVM:  Overview

• The classifier is a separating hyperplane.

• Most “important” training points are support vectors; they define the 
hyperplane.

• Quadratic optimization algorithms can identify which training points xi are 
support vectors with non-zero Lagrangian multipliers αi.

• Both in the dual formulation of the problem and in the solution training 
points appear only inside inner products: 

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and 
(1) Σαiyi = 0
(2)  0 ≤ αi ≤ C for all αi

f(x) = Σαiyixi
Tx + b
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Non-linear SVMs

• Datasets that are linearly separable with some noise work out great:

• But what are we going to do if the dataset is just too hard? 

• How about… mapping data to a higher-dimensional space:

0

x2

x

0 x

0 x
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Nonlinear classification

x = a,b!" #$

xiw = w1a+w2b

↓

θ (x) = a,b,ab,a2 ,b2!
"

#
$

θ (x)iw = w1a+w2b+w3ab+w4a
2 +w5b

2
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Non-linear SVMs:  Feature spaces

• General idea:   the original feature space can always be mapped to some 
higher-dimensional feature space where the training set is separable:

Φ:  x→ φ(x)
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The “Kernel Trick”

• The linear classifier relies on inner product between vectors K(xi, xj)=xi
Txj

• If every datapoint is mapped into high-dimensional space via some transformation 
Φ:  x→ φ(x), the inner product becomes:

K(xi, xj)= φ(xi) Tφ(xj)

• A kernel function is some function that corresponds to an inner product into some 
feature space.

• Example: 
– 2-dimensional vectors x=[x1   x2];  let K(xi,xj)=(1 + xi

Txj)2
,

– Need to show that K(xi,xj)= φ(xi) Tφ(xj):

K(xi,xj) = (1 + xi
Txj)2

,= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2

=  [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]T [1  xj1
2  √2 xj1xj2  xj2

2  √2xj1  √2xj2] 
=  φ(xi) Tφ(xj),    where φ(x) = [1  x1

2  √2 x1x2  x2
2   √2x1  √2x2]
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• A square matrix A is positive definite if xTAx>0 for all nonzero 
column vectors x. 

• It is negative definite if xTAx < 0 for all nonzero x.

• It is positive semi-definite if xTAx ≥ 0.

• And negative semi-definite if xTAx ≤ 0 for all x.

Positive definite matrices
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What functions are kernels?

• For some functions K(xi,xj) checking that K(xi,xj)= φ(xi) Tφ(xj) can be cumbersome. 

• Mercer’s theorem:  

Every semi-positive definite symmetric function is a kernel

• Semi-positive definite symmetric functions correspond to a semi-positive definite 
symmetric Gram matrix:

K(x1,x1) K(x1,x2) K(x1,x3) … K(x1,xN)

K(x2,x1) K(x2,x2) K(x2,x3) K(x2,xN)

… … … … … 

K(xN,x1) K(xN,x2) K(xN,x3) … K(xN,xN)

K=
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Examples of kernel functions

• Linear: K(xi,xj) = xi 
Txj

• Polynomial of power p: K(xi,xj) = (1+ xi 
Txj)p

• Gaussian (radial-basis function network): K(xi,xj) =

• Two-layer perceptron: K(xi,xj)= tanh(β0xi 
Txj + β1)

2

2

2σ
ji xx −

−

e
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Non-linear SVMs - optimization

• Dual problem formulation:

• The solution is:

• Optimization techniques for finding αi’s remain the same!

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjK(xi, xj) is maximized and 
(1) Σαiyi = 0
(2) αi ≥ 0 for all αi

f(x) = ΣαiyiK(xi, xj)+ b
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SVM applications

• SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and 
gained increasing popularity in late 1990s.

• SVMs are currently among the best performers for a number of 
classification tasks ranging from text to genomic data.

• SVM techniques have been extended to a number of tasks such as 
regression [Vapnik et al. ’97], principal component analysis [Schölkopf et 
al. ’99], etc. 

• Most popular optimization algorithms for SVMs are SMO [Platt ’99] and 
SVMlight [Joachims’ 99], both use decomposition to hill-climb over a subset 
of αi’s at a time. 

• Tuning SVMs remains a black art:  selecting a specific kernel and 
parameters is usually done in a try-and-see manner. 
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SVM extensions

• Regression

• Variable Selection

• Boosting

• Density Estimation

• Unsupervised Learning
– Novelty/Outlier Detection
– Feature Detection
– Clustering
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Example in drug design

• Goal to predict bio-reactivity of molecules to decrease drug 
development time.

• Target is to predict the logarithm of inhibition concentration for  
site "A" on the Cholecystokinin (CCK) molecule.

• Constructs quantitative structure activity relationship (QSAR) 
model.
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LCCKA problem

• Training data – 66 molecules

• 323 original attributes are wavelet coefficients of  TAE Descriptors.

• 39 subset of attributes selected by linear 1-norm SVM (with no kernels).

• For details see DDASSL project link off of http://www.rpi.edu/~bennek

• Testing set results reported.
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LCCK  prediction
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0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True%Value

Pr
ed
ic
te
d%
Va
lu
e



46

Many other applications
• Speech Recognition

• Data Base Marketing

• Quark Flavors in High Energy Physics

• Dynamic Object Recognition

• Knock Detection in Engines

• Protein Sequence Problem

• Text Categorization

• Breast Cancer Diagnosis

• Cancer Tissue classification 

• Translation initiation site recognition in DNA

• Protein fold recognition  
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• Generalization theory and practice meet

• General methodology for many types of problems

• Same Program + New Kernel = New method

• No problems with local minima

• Few model parameters. Selects capacity

• Robust  optimization methods

• Successful Applications

One of the best!!
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• Will SVMs beat my best hand-tuned method Z for X?

• Do SVM scale to massive datasets?

• How to chose C and Kernel?

• What is the effect of attribute scaling?

• How to handle categorical variables?

• How to incorporate domain knowledge?

• How to interpret results?

Open questions
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Support Vector Machine Resources

• SVM Application List
http://www.clopinet.com/isabelle/Projects/SVM/applist.html

• Kernel machines
http://www.kernel-machines.org/

• Pattern Classification and Machine Learning
http://clopinet.com/isabelle/#projects

• R a GUI language for statistical computing and graphics
http://www.r-project.org/

• Kernel Methods for Pattern Analysis – 2004
http://www.kernel-methods.net/

• An Introduction to Support Vector Machines
(and other kernel-based learning methods)

http://www.support-vector.net/
• Kristin P. Bennett web page

http://www.rpi.edu/~bennek
• Isabelle Guyon's home page

http://clopinet.com/isabelle


