# Support Vector Machines 

Machine Learning Spring 2018
March 52018
Kasthuri Kannan
kasthuri.kannan@nyumc.org

## Overview

- Support Vector Machines for Classification
- Linear Discrimination
- Nonlinear Discrimination
- SVM Mathematically
- Extensions
- Application in Drug Design
- Data Classification
- KernelFunctions


## Definition

One of the excellent classification system based on a mathematical technique called convex optimization.
'Support Vector Machine is a system for efficiently training linear learning machines in kernel-induced feature spaces, while respecting the insights of generalisation theory and exploiting optimisation theory.'

- AN INTRODUCTION TO SUPPORT VECTOR MACHINES (and other kernel-based learning methods)
- N. Cristianini and J. Shawe-Taylor, Cambridge University Press 2000 ISBN: 0521780195
- Kernel Methods for Pattern Analysis
- John Shawe-Taylor \& Nello Cristianini Cambridge University Press, 2004



## Dot product (aka inner product)



$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta
$$

Recall: If the vectors are orthogonal, dot product is zero.

The scalar or dot product is, in some sense, a measure of similarity

Decision function for binary classification

$$
\xrightarrow{\text { ecec }}
$$

## Support vector machines

- SVMs pick best separating hyper plane according to some criterion
- e.g. maximum margin
- Training process is an optimisation
- Training set is effectively reduced to a relatively small number of support vectors
- Key words: optimization, kernels


## Feature spaces

- We may separate data by mapping to a higherdimensional feature space
- The feature space may even have an infinite number of dimensions!
- We need not explicitly construct the new feature space
- "Kernel trick"
- Keeps the same computation time
- Key observation that optimization involves dot products


## Kernels

- What are kernels?

$$
(T f)(u)=\int_{t_{1}}^{t_{2}} K(t, u) f(t) d t
$$

- We may use Kernel functions to implicitly map to a new feature space
- Kernel functions: $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \in \mathbf{R}$
- In SVMs kernels preserve the inner product in the new feature space.


## Examples of kernels

## Linear:

Polynomial $\quad P(\langle\mathbf{x} \cdot \mathbf{z}\rangle)$
(non-linear)
Gaussian
(non-linear)

$$
\langle\mathbf{x} \cdot \mathbf{z}\rangle
$$

$$
\exp \left(-\|\mathbf{x}-\mathbf{z}\|^{2} / \sigma^{2}\right)
$$

## Perceptron as linear separator

- Binary classification can be viewed as the task of separating classes in feature space:


$$
f(\mathbf{x})=\operatorname{sign}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}+b\right)
$$

## Which of the linear separators is optimal?



## Best linear separator?



## Best linear separator?



## Best linear separator? Not so...



Best linear separator? Possibly...


Find closest points in convex hulls (3D)/convex polygon (2D)


Plane (3D)/line(2D) to bisect closest points


## Classification margin

- Distance from example data to the separator is $r=\frac{\mathbf{w}^{T} \mathbf{x}+b}{\|\mathbf{w}\|}$
- Data closest to the hyper plane are support vectors.
- Margin $\rho$ of the separator is the width of separation between classes.



## Maximum margin classification

- Maximize the margin (good according to intuition and theory).
- Implies that only support vectors are important; other training examples are ignorable.



## Statistical learning theory

- Misclassification error and the function complexity bound generalization error (prediction).
- Maximizing margins minimizes complexity.
- "Eliminates" overfitting.
- Solution depends only on support vectors not number of attributes.

Margins and complexity


Margins and complexity


# Fat margin is less complex. 

## Linear SVM

- Assuming all data is at distance larger than 1 from the hyperplane, the following two constraints follow for a training set $\left\{\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)\right\}$

$$
\begin{array}{ll}
\mathbf{w}^{\mathbf{T}} \mathbf{x}_{\mathbf{i}}+b \geq 1 & \text { if } y_{i}=1 \\
\mathbf{w}^{\mathbf{T}} \mathbf{x}_{\mathbf{i}}+b \leq-1 & \text { if } y_{i}=-1
\end{array}
$$

- For support vectors, the inequality becomes an equality; then, since each example's distance from the
- hyperplane is $r=\frac{\mathbf{w}^{T} \mathbf{x}+b}{\|\mathbf{w}\|}$ the margin is: $\rho=\frac{2}{\|\mathbf{w}\|}$


## Linear SVM

We can formulate the problem:

Find $\mathbf{w}$ and $b$ such that

$$
\begin{gathered}
\rho=\frac{2}{\|\mathbf{w}\|} \text { is maximized and for all }\left\{\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)\right\} \\
\mathbf{w}^{\mathbf{T}} \mathbf{x}_{\mathbf{i}}+b \geq 1 \text { if } y_{i}=1 ; \quad \mathbf{w}^{\mathbf{T}} \mathbf{x}_{\mathbf{i}}+b \leq-1 \quad \text { if } y_{i}=-1
\end{gathered}
$$

into quadratic optimization formulation:

Find $\mathbf{w}$ and $b$ such that
$\boldsymbol{\Phi}(\mathbf{w})=1 / 2 \mathbf{w}^{\mathrm{T}} \mathbf{w}$ is minimized and for all $\left\{\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)\right\}$
$y_{i}\left(\mathbf{w}^{\mathbf{T}} \mathbf{x}_{\mathbf{i}}+b\right) \geq 1$

## Solving the optimization problem

Find $\mathbf{w}$ and $b$ such that
$\boldsymbol{\Phi}(\mathbf{w})=1 / 2 \mathbf{w}^{\mathrm{T}} \mathbf{w}$ is minimized and for all $\left\{\left(\mathbf{X}_{\mathbf{i}}, y_{i}\right)\right\}$ $y_{i}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{\mathbf{i}}+b\right) \geq 1$

- Need to optimize a quadratic function subject to linear constraints.
- Quadratic optimization problems are a well-known class of mathematical programming problems, and many (rather intricate) algorithms exist for solving them.
- The solution involves constructing a dual problem where a Lagrange multiplier $\alpha_{i}$ is associated with every constraint in the primary problem:

Find $\alpha_{1} \ldots \alpha_{N}$ such that
$\mathbf{Q}(\boldsymbol{\alpha})=\Sigma \alpha_{i}-1 / 2 \Sigma \Sigma \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{\mathbf{i}} \mathbf{T}_{\mathbf{j}}$ is maximized and
(1) $\sum \alpha_{i} y_{i}=0$
(2) $\alpha_{i} \geq 0$ for all $\alpha_{i}$

## The quadratic optimization problem solution

- The solution has the form:

$$
\mathbf{w}=\sum \alpha_{i} y_{i} \mathbf{x}_{\mathbf{i}} \quad b=y_{k}-\mathbf{w}^{\mathbf{T}} \mathbf{x}_{\mathbf{k}} \text { for any } \mathbf{x}_{\mathbf{k}} \text { such that } \alpha_{k} \neq 0
$$

- Each non-zero $\alpha_{i}$ indicates that corresponding $\mathbf{x}_{\mathbf{i}}$ is a support vector.
- Then the classifying function will have the form:

$$
f(\mathbf{x})=\sum \alpha_{i} y_{i} \mathbf{x}_{\mathbf{i}}{ }^{\mathbf{T}} \mathbf{x}+b
$$

- Notice that it relies on an inner product between the test point $\mathbf{x}$ and the support vectors $\mathbf{x}_{\mathbf{i}}$ - we will return to this later!
- Also keep in mind that solving the optimization problem involved computing the inner products $\mathbf{x}_{\mathbf{i}}{ }^{\mathbf{T}} \mathbf{x}_{\mathbf{j}}$ between all training points!


## Soft margin classification

- What if the training set is not linearly separable?
- Slack variables $\xi_{\mathrm{i}}$ can be added to allow misclassification of difficult or noisy examples.



## Soft margin classification

- The old formulation:

$$
\begin{aligned}
& \text { Find } \mathbf{w} \text { and } b \text { such that } \\
& \boldsymbol{\Phi}(\mathbf{w})=1 / 2 \mathbf{w}^{\mathrm{T}} \mathbf{w} \text { is minimized and for all }\left\{\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)\right\} \\
& y_{i}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{\mathbf{i}}+\mathrm{b}\right) \geq 1
\end{aligned}
$$

- The new formulation incorporating slack variables:

$$
\begin{aligned}
& \text { Find } \mathbf{w} \text { and } b \text { such that } \\
& \boldsymbol{\Phi ( \mathbf { w } ) = 1 / 2 \mathbf { w } ^ { \mathrm { T } } \mathbf { w } + C \Sigma \xi _ { i } \quad \text { is minimized and for all } \{ ( \mathbf { X } _ { \mathbf { i } } , y _ { i } ) \}} \\
& y_{i}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{\mathbf{i}}+b\right) \geq 1-\xi_{i} \quad \text { and } \quad \xi_{i} \geq 0 \text { for all } i
\end{aligned}
$$

- Parameter $C$ can be viewed as a way to control overfitting.


## Soft margin classification - solution

- The dual problem for soft margin classification:

$$
\begin{aligned}
& \text { Find } \alpha_{1} \ldots \alpha_{N} \text { such that } \\
& \mathbf{Q}(\boldsymbol{\alpha})=\sum \alpha_{i}-1 / 2 \sum \sum \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{\mathbf{i}} \mathbf{T}_{\mathbf{x}} \text { is maximized and } \\
& \text { (1) } \sum \alpha_{i} y_{i}=0 \\
& \text { (2) } 0 \leq \alpha_{i} \leq C \text { for all } \alpha_{i}
\end{aligned}
$$

- Neither slack variables $\xi_{i}$ nor their Lagrange multipliers appear in the dual problem!
- Again, $\mathbf{x}_{\mathbf{i}}$ with non-zero $\alpha_{i}$ will be support vectors.
- Solution to the dual problem is:

$$
\begin{aligned}
& \mathbf{w}=\sum \alpha_{i} y_{i} \mathbf{x}_{\mathbf{i}} \\
& b=y_{k}\left(1-\xi_{k}\right)-\mathbf{w}^{\mathbf{T}} \mathbf{x}_{\mathbf{k}} \text { where } \mathrm{k}=\underset{k}{\operatorname{argmax}} \alpha_{k}
\end{aligned}
$$

But neither w nor $b$ are needed explicitly for classification!

$$
f(\mathbf{x})=\sum \alpha_{i} y_{i} \mathbf{x}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x}+b
$$

## Theoretical justification for maximum margins

- Vapnik has proved the following:

The class of optimal linear separators has VC dimension h bounded from above as

$$
h \leq \min \left\{\left[\frac{D^{2}}{\rho^{2}}\right\rceil, m_{0}\right\}+1
$$

where $\rho$ is the margin, $D$ is the diameter of the smallest sphere that can enclose all of the training examples, and $m_{0}$ is the dimensionality.

- Intuitively, this implies that regardless of dimensionality $m_{0}$ we can minimize the VC dimension by maximizing the margin $\rho$.
- Thus, complexity of the classifier is kept small regardless of dimensionality.


## Linear SVM: Overview

- The classifier is a separating hyperplane.
- Most "important" training points are support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points $\mathbf{x}_{\mathbf{i}}$ are support vectors with non-zero Lagrangian multipliers $\alpha_{i}$.
- Both in the dual formulation of the problem and in the solution training points appear only inside inner products:

> Find $\alpha_{l} \ldots \alpha_{N}$ such that
> $\left.\mathbf{Q}(\boldsymbol{\alpha})=\Sigma \alpha_{i}-1 / 2 \Sigma \Sigma \alpha_{i} \alpha_{j} y_{i} y\right) \sqrt[\mathbf{x}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x}_{\mathbf{j}}]{ }$ is maximized and
> (1) $\sum \alpha_{i} y_{i}=0$
> (2) $0 \leq \alpha_{i} \leq C$ for all $\alpha_{i}$

$$
f(\mathbf{x})=\sum \alpha_{i} y_{i} \mathbf{x}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x}+b
$$

## Non-linear SVMs

- Datasets that are linearly separable with some noise work out great:

- But what are we going to do if the dataset is just too hard?

- How about... mapping data to a higher-dimensional space:


Nonlinear classification

$$
\begin{aligned}
& x=[a, b] \\
& x \bullet w=w_{1} a+w_{2} b \\
& \downarrow(x)=\left[a, b, a b, a^{2}, b^{2}\right] \\
& \theta(x) \bullet w=w_{1} a+w_{2} b+w_{3} a b+w_{4} a^{2}+w_{5} b^{2}
\end{aligned}
$$

## Non-linear SVMs: Feature spaces

- General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:



## The "Kernel Trick"

- The linear classifier relies on inner product between vectors $K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\mathbf{x}_{\mathbf{i}}{ }^{\mathbf{T}} \mathbf{x}_{\mathbf{j}}$
- If every datapoint is mapped into high-dimensional space via some transformation $\Phi: \mathbf{x} \rightarrow \varphi(\mathbf{x})$, the inner product becomes:

$$
K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\varphi\left(\mathbf{x}_{\mathbf{i}}\right)^{\mathbf{T}} \varphi\left(\mathbf{x}_{\mathbf{j}}\right)
$$

- A kernel function is some function that corresponds to an inner product into some feature space.
- Example:
- 2-dimensional vectors $\mathbf{x}=\left[x_{1} x_{2}\right]$; let $K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\left(1+\mathbf{x}_{\mathbf{i}}{ }^{\mathbf{T}} \mathbf{x}_{\mathbf{j}}\right)^{2}$,
- Need to show that $K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\varphi\left(\mathbf{x}_{\mathbf{i}}\right)^{\mathbf{T}} \varphi\left(\mathbf{x}_{\mathbf{j}}\right)$ :

$$
\begin{aligned}
& K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\left(1+\mathbf{x}_{\mathbf{i}} \mathbf{T}_{\mathbf{j}}^{\mathbf{j}}\right)^{2}=1+x_{i 1}{ }^{2} x_{j 1}{ }^{2}+2 x_{i 1} x_{j 1} x_{i 2} x_{j 2}+x_{i 2}{ }^{2} x_{j 2}{ }^{2}+2 x_{i 1} x_{j 1}+2 x_{i 2} x_{j 2} \\
& =\left[\begin{array}{lllll}
1 & x_{i 1}{ }^{2} \sqrt{ } 2 & x_{i 1} x_{i 2} & x_{i 2}{ }^{2} \sqrt{ } 2 x_{i 1} \sqrt{ } 2 x_{i 2}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{lllll}
1 & x_{j 1}{ }^{2} \sqrt{ } 2 & x_{j 1} x_{j 2} & x_{j 2}{ }^{2} \sqrt{ } 2 x_{j 1} & \sqrt{ } 2 x_{j 2}
\end{array}\right] \\
& =\varphi\left(\mathbf{x}_{\mathbf{i}}\right)^{\mathbf{T}} \varphi\left(\mathbf{x}_{\mathbf{j}}\right) \text {, where } \varphi(\mathbf{x})=\left[\begin{array}{lllll}
1 & x_{1}{ }^{2} \sqrt{ } 2 x_{1} x_{2} & x_{2}{ }^{2} \sqrt{ } 2 x_{1} & \sqrt{ } 2 x_{2}
\end{array}\right]
\end{aligned}
$$

## Advances in Kernel Methods

Support Vector Learning


## Positive definite matrices

- A square matrix A is positive definite if $x^{T} A x>0$ for all nonzero column vectors $x$.
- It is negative definite if $x^{T} A x<0$ for all nonzero $x$.
- It is positive semi-definite if $x^{T} A x \geq 0$.
- And negative semi-definite if $x^{T} A x \leq 0$ for all x


## What functions are kernels?

- For some functions $K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)$ checking that $K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\varphi\left(\mathbf{x}_{\mathbf{i}}\right)^{\mathbf{T}} \varphi\left(\mathbf{x}_{\mathbf{j}}\right)$ can be cumbersome.
- Mercer's theorem:

Every semi-positive definite symmetric function is a kernel

- Semi-positive definite symmetric functions correspond to a semi-positive definite symmetric Gram matrix:

$\mathrm{K}=$| $K\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right)$ | $K\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right)$ | $K\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{3}}\right)$ | $\ldots$ | $K\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{N}}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| $K\left(\mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{1}}\right)$ | $K\left(\mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{2}}\right)$ | $K\left(\mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{3}}\right)$ |  | $K\left(\mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{N}}\right)$ |
|  |  |  |  |  |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| $K\left(\mathbf{x}_{\mathbf{N}}, \mathbf{x}_{\mathbf{1}}\right)$ | $K\left(\mathbf{x}_{\mathbf{N}}, \mathbf{x}_{\mathbf{2}}\right)$ | $K\left(\mathbf{x}_{\mathbf{N}}, \mathbf{x}_{\mathbf{3}}\right)$ | $\ldots$ | $K\left(\mathbf{x}_{\mathbf{N}}, \mathbf{x}_{\mathbf{N}}\right)$ |

## Examples of kernel functions

- Linear: $K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\mathbf{x}_{\mathbf{i}}{ }^{\mathbf{T}} \mathbf{x}_{\mathbf{j}}$
- Polynomial of power $p: K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\left(1+\mathbf{x}_{\mathbf{i}}{ }^{\mathbf{T}} \mathbf{x}_{\mathbf{j}}\right)^{p}$
- Gaussian (radial-basis function network): $K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathrm{j}}\right)=e^{\frac{-\left\|\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{i}}\right\|^{2}}{2 \sigma^{2}}}$
- Two-layer perceptron: $K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)=\tanh \left(\beta_{0} \mathbf{x}_{\mathbf{i}}^{\mathbf{T}} \mathbf{x}_{\mathbf{j}}+\beta_{1}\right)$


## Non-linear SVMs - optimization

- Dual problem formulation:

Find $\alpha_{1} \ldots \alpha_{N}$ such that
$\mathbf{Q}(\boldsymbol{\alpha})=\Sigma \alpha_{i}-1 / 2 \Sigma \Sigma \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)$ is maximized and
(1) $\sum \alpha_{i} y_{i}=0$
(2) $\alpha_{i} \geq 0$ for all $\alpha_{i}$

- The solution is:

$$
f(\mathbf{x})=\sum \alpha_{i} y_{i} K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathbf{j}}\right)+b
$$

- Optimization techniques for finding $\alpha_{i}$ 's remain the same!


## SVM applications

- SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained increasing popularity in late 1990s.
- SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
- SVM techniques have been extended to a number of tasks such as regression [Vapnik et al. '97], principal component analysis [Schölkopf et al. '99], etc.
- Most popular optimization algorithms for SVMs are SMO [Platt '99] and SVM ${ }^{\text {light }}$ [Joachims' 99], both use decomposition to hill-climb over a subset of $\alpha_{i}$ 's at a time.
- Tuning SVMs remains a black art: selecting a specific kernel and parameters is usually done in a try-and-see manner.


## SVM extensions

- Regression
- Variable Selection
- Boosting
- Density Estimation
- Unsupervised Learning
- Novelty/Outlier Detection
- Feature Detection
- Clustering


## Example in drug design

- Goal to predict bio-reactivity of molecules to decrease drug development time.
- Target is to predict the logarithm of inhibition concentration for site "A" on the Cholecystokinin (CCK) molecule.
- Constructs quantitative structure activity relationship (QSAR) model.


## LCCKA problem

- Training data - 66 molecules
- 323 original attributes are wavelet coefficients of TAE Descriptors.
- 39 subset of attributes selected by linear 1-norm SVM (with no kernels).
- For details see DDASSL project link off of http://www.rpi.edu/~bennek
- Testing set results reported.


## LCCK prediction

LCCKA Test Set Estimates


## Many other applications

- Speech Recognition
- Data Base Marketing
- Quark Flavors in High Energy Physics
- Dynamic Object Recognition
- Knock Detection in Engines
- Protein Sequence Problem
- Text Categorization
- Breast Cancer Diagnosis
- Cancer Tissue classification
- Translation initiation site recognition in DNA
- Protein fold recognition


## One of the best!!

- Generalization theory and practice meet
- General methodology for many types of problems
- Same Program + New Kernel = New method
- No problems with local minima
- Few model parameters. Selects capacity
- Robust optimization methods
- Successful Applications


## Open questions

- Will SVMs beat my best hand-tuned method Z for X ?
- Do SVM scale to massive datasets?
- How to chose C and Kernel?
- What is the effect of attribute scaling?
- How to handle categorical variables?
- How to incorporate domain knowledge?
- How to interpret results?


## Support Vector Machine Resources

- SVM Application List
http://www.clopinet.com/isabelle/Projects/SVM/applist.html
- Kernel machines http://www.kernel-machines.org/
- Pattern Classification and Machine Learning http://clopinet.com/isabelle/\#projects
- R a GUI language for statistical computing and graphics http://www.r-project.org/
- Kernel Methods for Pattern Analysis - 2004
http://www.kernel-methods.net/
- An Introduction to Support Vector Machines (and other kernel-based learning methods)
http://www.support-vector.net/
- Kristin P. Bennett web page http://www.rpi.edu/~bennek
- Isabelle Guyon's home page
http://clopinet.com/isabelle

